

WWW.IEEECONTACT.ORG

JULY 2013 CIRCULATION 3420

VOLUME 44 NUMBER 07

- · Low complexity, reconfigurable digital filters
- 2013 IEEE Power and Energy general meeting
- Shaping the future energy industry
- · Know your signals: waveform digitizing
- Design of high-speed wireline transceivers
- International Professional Communication Conference
- Dual Fuid Reactor, a concept of a fast nuclear reactor
- Efficient signal processing and EEG based BCI
- Technical field trip to Victoria
- Play golf today and improve tomorrow
- IEEE PES Scholarship Plus Initiative expanded
- Welcome newcomers to IEEE Vancouver
- · Multihoming: scheduling, modelling, and management
- Workshop: IEC 61850 fundamentals, applications, benefits
- Extreme CMOS manufacturability and reliability
- · Trustworthy Smart-Grid infrastructures

IEEE prohibits discrimination, harassment and bullying. Info:http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html

Know your signals: waveform digitizing in the giga-sample range with switched capacitor arrays

Stefan Ritt Paul Scherrer Institute

Distinguished Lecturer

Monday 15 July 4:00 PM

TRIUMF Auditorium 4004 Wesbrook Mall UBC Fast waveform digitizing is traditionally done with ash ADCs. These devices however hit their limits in resolution and power consumption when it comes to sampling rates far beyond the Giga-sample per second range (GSPS). An alternative for non-periodic signals are Switched Capacitor Arrays (SCA) that store an analog waveform in a series of capacitors, which are then digitized after a trigger at much lower speed.

While these chips have been used for two decades in particle physics, the recent improvements in CMOS technology allows for designs with resolutions of 12 bits, sampling speeds beyond 10 GSPS and power consumptions of a few tens of mW per channel. Putting many channels on a single chip makes it

possible to build data acquisition systems with several thousand channels at reasonable costs, space and power requirements. Obtaining the waveforms of particle detectors at high resolution allows excellent timing measurements down to a few pico-seconds, doing particle discrimination and ecient pile-up rejection.

This Talk covers the basic principles of SCAs, gives an overview of currently available chips and introduces advanced waveform processing techniques used in particle physics and gamma-ray astronomy. Experiences from the MEG experiment with 3000 SCA channels are reported. It finishes with an outlook for new chips currently under design and how they can be used in future experiments.

https://meetings.vtools.ieee.org/meeting_view/list_meeting/18965

TRILIME Auditorium

Information
Jt Applied Physics chair
Ahmed Hussein
Ahmed.Hussein@unbc.ca

Vinod Prasad NTU Singapore

Monday 24 June 5:30 pm to 7:00 pm

Room 2020, Kaiser Bldg 2332 Main Mall, UBC

Cosponsor: IEEE Circuits and Systems Society joint Chapter of the Vancouver/ Victoria Sections

Light refreshments will be served. The event is open to public. We would greatly appreciate if you would please register so that we may more accurately estimate the room size and communication receivers. refreshments.

Low complexity, reconfigurable digital filters and filter banks for channelization and spectrum sensing in multi-standard wireless communication receivers

fundamental idea of SDR is to replace the conventional communication standards by reconfiguration of the utilization and change their behavioral and transmission spectrum access. An important function in CRs is www.ntu.edu.sg/home/asvinod spectrum sensing, wherein the presence and (or) absence of channels of licensed users is to be Vinod.s research interests include digital signal detected in the wideband input signal in order to allow the unlicensed users. In filter bank (FB) based spectrum sensing, the wideband input frequency range is split into uniform or non-uniform subbands using FBs and techniques such as energy detection.

FBs, is the most computationally intensive part of the SDR and CR based wireless communication receivers. In a typical CR, multiple radio channels corresponding simultaneously coexist in the wideband input signal. These channels need to be accurately detected by the spectrum sensing block and then individually to stringent area, power and cost specifications, are desired for SDR and CR based wireless faculty for teaching excellence.

Software defined radio (SDR) has been proposed as **Speaker:** Vinod Prasad received his B. Tech. degree the solution to seamlessly support the existing and from University of Calicut, India in 1993 and the M. upcoming wireless communication standards. The Engg and Ph.D. degrees from School of Computer Engineering, Nanyang Technological University, analog signal processing in radio receivers with digital Singapore in 2000 and 2004 respectively. He has signal processing thus enabling the support of multiple spent the first 5 years of his career in industry as an automation engineer at Kirloskar (India), Tata same hardware platform. SDR based cognitive radios Honeywell (India), and Shell (Singapore). He joined (CRs) have the ability to sense the current spectrum the School of Computer Engineering at Nanyang Technological University (NTU), Singapore, in 2002, characteristics dynamically so as to achieve efficient where he is currently an Associate Professor.

processing (DSP), low power and reconfigurable DSP opportunistic access of the vacant frequency bands to circuits, software defined radio, cognitive radio and brain-computer interface. He has secured research grants from Ministry of Education (Singapore), Ministry of Defense (Singapore), DSO National Labs, European the presence of signals is then detected using Aeronautic Defence & Space Company (EADS) Singapore, Embassy of France in Singapore, UK High commission (Singapore) and Singapore Millennium The channelizer, which consists of channel filters and Foundation (SMF), amounting over S\$1.5 million as principal investigator. He has published about 160 research papers in refereed international journals and conferences. Currently, Vinod is leading a research to different wireless communication standards team of 2 Postdoctoral Research Fellows and 7 PhD Students in Centre for High Performance Embedded Systems (CHiPES), NTU. He is a Senior Member of IEEE, Associate Editor of Circuits, Systems, and extracted by the channelizer, thus necessitating the Signal Processing Journal (Springer), and an Editor of ability to perform multi-standard channelization. Due International Journal of Advancements in Computing Technology (IJACT). He has won the Nanyang Award channel filters and FBs that have low hardware resource for Excellence in Teaching in 2009, the highest utilization, low power consumption and high flexibility recognition conferred by the University to individual

Registration: https://meetings.vtools.ieee.org/meeting_registration/register/19115

Information Solid-state Ciruits chair Shahriar Mirabbasi shahriar@ece.ubc.ca

Jafar Savoj Xilinx

Distinguished Lecturer

Thursday 04 July 5:30 pm to 7:00 pm

Room 2020, Kaiser Bldg 2332 Main Mall, UBC

> Light refreshments will be served.

The event is open to public

Information

Solid-state Ciruits chair Shahriar Mirabbasi shahriar@ece.ubc.ca

Design of high-speed wireline transceivers for backplane communications in 28nm CMOS

This presentation describes the design of the group for wireless connectivity. He was responsible for high-speed reconfigurable transceivers. Architectural are proposed and their effectiveness on various presentation describes the design of two fully-adaptive backplane transceivers embedded in state-of-the-art BER < 10-15 over a 33dB-loss backplane at 12.5Gb/ s, and over a 31dB-loss backplane at 13.1Gb/s.

Speaker: Jafar Savoj received the B.Sc. degree in electrical engineering from Sharif University of Dr. Savoj was a recipient of the IEEE Solid-State Technology, Tehran, Iran, in 1996, and the M.Sc. and 2001, respectively.

product development for wireless, wireline, and analog systems. He is currently an Engineering Director with CA, and led the advanced technology development Journal in 2005, 2006 and 2011.

architecture and circuit blocks for backplane development of WLAN and Near Field Communication communication transceivers. A channel study (NFC) transceivers, and low power chip-to-chip investigates the major challenges in the design of interfaces for mobile platforms. From 2005 to 2008, he was a principal engineer at Rambus, where he solutions resolving channel-induced signal distortions developed ultra-high-speed data converters for software programmable wireline transceivers. Prior to that, he channels is investigated. Subsequently, the held design engineering positions at Marvell Semiconductor, Santa Clara, CA, focusing on fiber channel and Gigabit Ethernet transceivers; and at low-leakage 28nm CMOS FPGAs operating up to Transpectrum, Los Angeles, CA, architecting 10-Gb/ 12.5Gb/s and 13.1Gb/s. The two transceivers achieve s and 40-Gb/s optical transceivers in CMOS technology. He held a lecturing position at Stanford University in 2004. He is the author of High-Speed CMOS Circuits for Optical Receivers (Kluwer, 2001).

Circuits Society Predoctoral Fellowship for 2000-Ph.D. degrees in electrical engineering from the 2001, and the Beatrice Winner Award for Editorial University of California, Los Angeles, in 1998 and Excellence at the 2001 ISSCC, and the Design Contest Award of the 2001 Design Automation Conference. He serves as a technical program committee member of Dr. Savoj's areas of expertise include technology and ISSCC (Analog Subcommittee). He served as a technical program committee member of the IEEE Custom Integrated Circuits Conference (CICC) from the Serdes Technology Group at Xilinx, San Jose, 2001 to 2007 and the IEEE Symposium on VLSI CA, and leads high-speed, low-power wireline Circuits from 2007 to 2011. He was an Associate transceiver development for FPGA applications. From Editor for the IEEE JOURNAL OF SOLID-STATE 2008 to 2010, he was with Qualcomm, Santa Clara, CIRCUITS from 2008 to 2011 and a Guest Editor for the

International Professional Communication Conference

July 15 – 17, 2013 University of British Columbia

Register Today!Register by July 13 and save \$50 on registration costs. http://pcs.ieee.org/ipcc2013/

The annual International Professional Communication Conference sponsored by the IEEE Professional Communication Society Attended by professionals from around the world, the International Professional Communication Conference (IPCC) offers an opportunity engineers, and educators and students in engineering communication. include technical and professional communicators, practicing

Register by July 13 and save \$50 on IPCC 2013 registration costs!

for colleagues and experts to meet and learn about leading-edge. This year's theme explores the complex intersection of rapidly developments in communication theory and technology. Attendees emerging technologies and ever-changing linguistic, social, national, and cultural borders in today's increasingly globalized world.

Ahmed Hussein University of Northern BC

Monday 24 June 4:00 PM

TRIUMF Auditorium 4004 Wesbrook Mall UBC

Information Joint Applied Physics chair Ahmed Hussein Ahmed.Hussein@unbc.ca

Dual Fuid Reactor, a new concept of a fast nuclear reactor

The Dual Fluid Reactor (DFR) is a novel nuclear reactor concept based on the Generation IV Molten-Salt Reactor (MSR) concept and the liquid-metal cooled reactors (SFR, LFR) with the major improvement that the molten-salt fuel is not used as coolant but the heat is removed in a separate liquid-lead loop. It is a fast reactor, that consumes all fissionable materials like U233, U235, U238, Pu239, natural Thorium, etc.

It has much simpler design, passive safety, and produces much less nuclear waste than currently used nuclear power reactors. It does not emit any radioactivity or green house gases during operation. It costs as much as a coal fed power station to construct and operate.

There are more benefits that will be discussed in the talk.

sessions, technical committee meetings and standards activities. Not to be missed are the technical tours, a student program, companion activities and more. This year's theme is Shaping the Future Energy Industry. For more information about the conference, please visit the conference website at http://www.pes-gm.org/2013.

The early bird registration deadline is less than a month away. I invite you to register for the conference and, in addition to the regular technical program, also attend various optional events which are selling out fast, for example technical tours and tutorials. Based on the statistics so far, we are anticipating what may be the largest IEEE PES General Meeting to date. I hope you can join us and make this an event to remember.

This largest IEEE PES annual conference attracts professionals We are also in need of many volunteers for the conference, so if you from every segment of the electric energy industry. It features a reside in Lower Mainland and you would like to learn how you can comprehensive technical program, including Super Sessions, panel volunteer and attend the conference for free, more information is available here. For those of you living outside the Lower Mainland, we have just added another block of hotel rooms at the preferred conference rate, please check the conference website for information how to book your hotel room.

> If you have any questions about the conference or how you can get involved, please send me an email. I look forward to seeing you at the General Meeting!

Mazana Armstrong Chair IEEE PES General Meeting 2013 Vancouver pesgm2013-vancouver@ieee.orgwww.pes-gm.org/2013/

Vinod Prasad NTU Singapore

Tuesday 25 June 2:00 pm to 3:30 pm

ASB 10900 (IRMACS Presentation Studio) SFU,Burnaby

Cosponsor: IEEE Circuits and Systems Society joint Chapter of the Vancouver/ Victoria Sections

Light refreshments will be served. The event is open to public. We would greatly appreciate if you would please register so that we may more accurately estimate the room size and refreshments.

Efficient signal processing techniques towards the development of EEG based Brain-Computer Interface (BCI)

Brain-Computer Interface (BCI) is an emerging technology that enables human brain to communicate with external world solely by brain signals, bypassing its normal output pathway of nerves and muscles. Capability of BCI for controlling external applications such as computer screen, wheel chair, robotic arm, communication tool for paralyzed patients. Neural features in Electroencephalogram (EEG) related to the mental imagination of motor movement, termed motor imagery (MI), are potential candidates for developing EEG-based BCI. Activations in brain.s motor cortex during MI result in distinct EEG patterns. identification of the relevant features.

This talk will present some of the efficient algorithms www.ntu.edu.sg/home/asvinod which we proposed towards the development of MIbased BCI. A major challenge in any MI based BCI is the variability of MI patterns in temporal, spectral and spatial domains across different subjects over time. Our Discriminative Filterbank Common Spatial Pattern (DFBCSP) addresses the inter-subject variability of MI patterns by effectively estimating the subjectspecific informative frequency bands for differentiating various MI tasks. Another new adaptive approach named as Adaptively Weighted Spectral Spatial Patterns (AWSSP) tracks the variability of the informative bands over time by adaptively computing the discriminative capability of various frequency components. Proposed methods offer higher BCI performance in terms of classification accuracy compared to the state-of art method. We have also proposed robust algorithms for classifying and decoding voluntary hand movement execution parameters such as direction and speed. The proposed speed profile from W-CSP filtered EEG. The talk will faculty for teaching excellence. also present preliminary results of our work to

understand the effect of neurofeedback games on the cognitive skills of healthy subjects with the intention of developing serious games for treating attention-deficit children.

Speaker: Vinod Prasad received his B. Tech. degree neuroprosthetic devices etc. makes it a promising from University of Calicut, India in 1993 and the M. Engg and Ph.D. degrees from School of Computer Engineering, Nanyang Technological University, Singapore in 2000 and 2004 respectively. He has spent the first 5 years of his career in industry as an automation engineer at Kirloskar (India), Tata Honeywell (India), and Shell (Singapore). He joined BCI performance is strongly correlated to accurate the School of Computer Engineering at Nanyang Technological University (NTU), Singapore, in 2002, where he is currently an Associate Professor.

Vinod.s research interests include digital signal processing (DSP), low power and reconfigurable DSP circuits, software defined radio, cognitive radio and brain-computer interface. He has secured research grants from Ministry of Education (Singapore), Ministry of Defense (Singapore), DSO National Labs, European Aeronautic Defence & Space Company (EADS) Singapore, Embassy of France in Singapore, UK High commission (Singapore) and Singapore Millennium Foundation (SMF), amounting over S\$1.5 million as principal investigator. He has published about 160 research papers in refereed international journals and conferences. Currently, Vinod is leading a research team of 2 Postdoctoral Research Fellows and 7 PhD Students in Centre for High Performance Embedded Systems (CHiPES), NTU. He is a Senior Member of IEEE, Associate Editor of Circuits, Systems, and Signal Processing Journal (Springer), and an Editor of Wavelet CSP (W-CSP) algorithm extracts low International Journal of Advancements in Computing frequency components of EEG that encodes Technology (IJACT). He has won the Nanyang Award movement parameter information. Our Multiple Linear for Excellence in Teaching in 2009, the highest Regressor models can reconstruct the movement recognition conferred by the University to individual

∲IEEE

Registration: https://meetings.vtools.ieee.org/meeting_registration/register/19111

Information Solid-state Ciruits chair Shahriar Mirabbasi shahriar@ece.ubc.ca

Technical field trip to Victoria Friday 12 July 8AM till 8PM

We will catch the 9AM ferry at the Tsawwassen terminal. Our tour in Victoria will finish around 5PM, and we will catch the 6PM ferry back to Vancouver.

The IEEE Engineering in Medicine and Biology (EMB) Vancouver chapter and UBC Biomedical Engineering Graduate Association Today, StarFish is a leading service provider in the medical device (BMEGA) club are organizing a technical field trip to Victoria. This field trip will include

- Tour of StarFish Medical (http://starfishmedical.com)
- Tour of CanAssist (http://canassist.ca)
- Presentation of local industries at University of Victoria (UVic)(http://www.engr.uvic.ca/~willerth/)

This is an excellent opportunity to visit one of the leading biomedical companies in BC, and to find out about job opportunities offered in Victoria. You will be able to network.

Agenda

9:00AM till 11:30AM Transit from Tsawwassen to StarFish Medical

11:30AM - 12:30PM

StarFish tour by Scott Phillips, president of StarFish

12:30PM - 1:30PM

StarFish presentation with light food and snack, followed by networking event

1:30PM - 2PM

Transit from StarFish to UVic

2PM - 3PM

CanAssist tour by Michael Shannon, director of CanAssist 3PM - 5PM

Tour of Willerth Laboratory and presentation of local industries

by Dr. Willerth 5PM - 7:30PM

Transit from StarFish to Vancouver

Cost:

This trip is partially subsidized by IEEE EMB and BMEGA for the students. The fee will include all transportation costs and light lunch.

For students: \$25 (includes all transportation costs and light lunch)

For professionals: \$45 (includes all transportation costs and light lunch)

Registration

Space is limited with priorities given to IEEE EMB and BMEGA members. To register, please send an email to Sara (sarak@ieee.org) or Kousha (kousha.talebian@gmail.com). We will create an invoice and forward it to you; You can then pay through PayPal using your PayPal account or credit card. Please indicate if you are a student or a professional. Please include your school name and student ID if applicable. You will receive a more detailed itinerary closer to the date of event.

About StarFish Medical

industry. They have successfully partnered with many innovative companies to create breakthrough products for numerous medical specialty areas. They have won numerous awards including:

- 2010 I.D. Magazine Annual Design Review Honorable Mention. StarFish was recognized by I.D. for their outstanding work on the VisionAid AMD treatment system.

- 2010 Red Dot Award Honorable Mention

StarFish received an honorable mention in the prestigious Red Dot awards for innovative design of a medical product with the OsseoPulse™ bone regeneration system.

- 2010 Nomination for Ernst & Young Entrepreneur of the Year Phillips was nominated in the Life Sciences category for British Columbia.

For more information, please visit http://starfishmedical.com

About CanAssist

CanAssist is an organization at the University of Victoria that is dedicated both to helping those with disabilities improve their quality of life and to increasing awareness and knowledge of disability issues. "We are primarily a service-based organization, but employ the considerable educational and research resources available to us at UVic. We focus on developing practical, customized technologies for people with disabilities, as well as providing innovative programs where there is a gap in existing services."

About Willerth Laboratory

"The Willerth lab uses quantitative approaches to significant biological problems in the areas of tissue engineering and regenerative medicine. One of the main areas of research focuses on the development of bioactive scaffolds for directing stem cell differentiation. Specifically, our lab studies the behavior of embryonic stem cells and induced pluripotent stem cells inside of biomaterial scaffolds as a method for engineering tissues. In particular, we are interested in using induced pluripotent stem cells as an exciting alternative to the use of traditional embryonic stem cell lines. IPS cells are generated from adult somatic cells, such as skin cells, by up regulating the expression of specific factors that restore the ability of the cells to differentiate into any type of cell."

Engineering in Medicine & Biology chair Rob Rohling rohlink@ece.ubc.ca

SHAPING THE FUTURE ENERGY INDUSTRY

2013 IEEE PES General Meeting Vancouver, BC | July 21-25

The 2013 IEEE Power & Energy Society General Meeting is being held at the Vancouver Convention Centre, British Columbia, Canada.

The PES General Meeting attracts thousands of professionals from every segment of the electric power and energy industry. It features a comprehensive technical program, including Super Sessions, panel sessions, tutorials, technical committee meetings and standards activities, PLUS excellent technical tours, a student program, companion activities and much more. This year's theme is **Shaping the Future Energy Industry**.

Super Sessions for the 2013 program include:

- Electricity Supply to Rural and Remote Communities
- Transmission System Efficiency and Reliability Improvements
- Impacts of Geomagnetic Disturbance (GMD) Events on Electric Power Systems
- Innovation and Advancements in Protection, Automation and Control for Evolving Power Systems
- · Generation Mix Strategies: Solving Energy Production Challenges of the 21st Century

This year, the PES general Meeting takes place in Vancouver, BC. Majestic mountains, sparkling ocean, rainforests and beautiful foliage all four seasons make Vancouver one of the most beautiful cities in the world - and a wonderful place to visit in July! Reserve your room at the Vancouver Marriott Pinnacle Downtown Hotel or the Renaissance Vancouver Harbourside Hotel.

REGISTER NOW

For more information and program updates visit: pes-gm.org/2013

Play golf today and improve tomorrow IEEE PES Scholarship Plus Initiative golf outing Sunday 21 July Furry Creek Golf Course

Plus Initiative Program Golf Outing scheduled for July 21, 2013 at Furry Creek Golf Course in Furry Creek, BC. The golf outing is being sponsored by the IEEE Power & Energy Society and is being held prior to the 2013 IEEE PES General Meeting. If you participate in this golf outing, you will enjoy a great day of camaraderie and friendly competition between golfing friends and colleagues who will tee it up all for the benefit of the IEEE PES Scholarship Plus Initiative and the Next Generation of Power and Energy Engineers. This golf outing will benefit the expansion of the IEEE PES Scholarship Plus Initiative Program to Canada.

Furry Creek is not a course that one merely plays - it is an enriching adventure to be savored. Considered one of the most beautifully landscaped playgrounds in British Columbia, Furry Creek delivers an unforgettable experience with its breathtaking beauty, dramatic play Foundation, is in its 3rd year. Since its inception, the program has and first-class facilities. As BC's most scenic golf course, Furry Creek perfectly captures the most spectacular qualities of this part. Ivy League colleges, flagship state universities and prestigious of the country. This par 72, 18-hole golf course designed by Robert engineering colleges across the US. The 2013 program goal is to Muir Graves and built in 1993 offers panoramic ocean views and distribute more than 400 scholarships in the US & Canada. If you encounters with abundant wildlife, and is just 35 minutes north of have any questions, please send us an email Vancouver, along the scenic Sea to Sky Highway to Whistler.

Registrations are now being taken for the IEEE PES Scholarship The cost to participate in the golf outing is US\$175 per person. Sponsorship opportunities are also available. There are a limited number of seats available for this golf outing that will offer all competitors the opportunity to win individual and team prizes. Early registration is encouraged as tee times will be sold on a first-come, first-served basis. The day's outing begins at 9:00 a.m. with a shotgun start followed by awards presentations. Visit the registration page and make your reservation.

> The IEEE PES Scholarship Plus Initiative provides multi-year scholarships to qualifying U.S. and Canadian electrical engineering undergraduate students. Scholars receive up to three years (US\$7,000) of funding interspersed with up to two years of valuable, hands-on career experience. The program, made possible by donations to the IEEE Power & Energy Society Scholarship Fund of the IEEE supported a total of 265 scholars attending 109 universities, including

IEEE PES Scholarship Plus Initiative has been expanded to Canada Applications are being accepted

Over the past two years, the IEEE Power & Energy Society has college careers are encouraged to apply, even if in June 2013 they distributed over US\$642,000 in scholarships to 265 students from have not yet declared electrical engineering as their major. 109 universities within the United States. In 2013, we are expanding the IEEE PES Scholarship Plus Initiative to include students in Canada. Our goal this year is to distribute more than 400 scholarships to electrical engineering students in the USA and Canada!

The PES Scholarship Plus Initiative™ is a scholarship and career experience program that was created in response to the looming workforce shortfall in the power and energy industry. Our goal is simple: increase the number of well-qualified, entry-level engineers by helping students. PES Scholarship Details We are offering up to US\$7,000 and assistance with career experience opportunities to qualifying students!

You must be a full-time student working towards a bachelor's degree in electrical engineering, a US or Canadian citizen or permanent and have a GPA of at least 3.0. Engineering students early in their Scholarship Plus Initiative (pesscholarship-info@ieee.org)

In Fall 2013, the individual must be enrolled in an electrical engineering program working toward a bachelor's degree. Here's how it works:? Eligible students should apply online by June 30th, 2013 at http:// www.eescholarship.org/application? Recipients will be selected by PES volunteers with industry and academic backgrounds. In the fall, recipients will be notified of their selection and be provided with information on how to arrange for a career experience with industryleading companies. ? The scholarship funds will be distributed to your university/college for deposit and credit against your student account. Don't delay, click below to start your scholarship application or follow us on Facebook. Apply Now http://www.ee-scholarship.org/ application Visit Us on Facebook http://www.facebook.com/ ieeepes.scholarship.plus

resident of either country, willing to take power engineering courses If you have any questions, please contact Dan Toland, IEEE PES

Welcome.. recent arrivals to IEEE Vancouver!!

Estamoh Aszinia	CS	Mai Hassan	CS	Thanh Son Pham	N.4
Fatemeh Aezinia		Mai Hassan			
Hafiz Munsub Ali		Simon Hecker		Oldooz Pooyanfar	
Babak Assadsangabi		Tayler Hetherington		Shokoofeh Pourmehr	
Thomas Au		Mark Hiebert		Ming Qi	
Bryce Baxter		Sabine Hindermann		Danica Reardon	
Graeme Bernier		Brian Hofer		Matthew Reid	
Max Bethune-Waddell		Tejpaul Hoonjan		Cory Reid	
Fatemeh Aezinia		Mike Hsiao		Thomas Ries	
Hafiz Munsub Ali		Jinzhong Hua		Kevin Russell	
Babak Assadsangabi		Hao Yu Huang		Janine Cindy Santiago	
Thomas Au	GS	Yingwei Huang		Marinko Sarunic	
Bryce Baxter	M	Helen losfin		Daniel Schwanke	
Graeme Bernier	ST	Barry Ivison	M	Nimesh Shah	M
Max Bethune-Waddell	ST	Pooya Jaferian	GS	Stan Shear	M
Chongyuan Bi	GS	Brian Just	M	Ahmed Sherwali	GS
Justin Blackman		Wasim Kapadia	ST	Won-Chul Shin	M
Dieter Blum	M	Jeremy Kawahara		Wilson Shiu	GS
Colin Brown	GS	Amir Kenarsari Anhari		Douglas Sim	
Jennifer Busler	M	Sayed Hossein Khatoonabadi		Krishneil Singh	
Ritesh Chand		Danil Khomenko		Jason Smith	
Li Chen		Emanuel Koseos		Yilun Song	
Zheng Chen		Gunes Kucukyilmaz		Tom Stefanski	
Ying Chen		Roshan Kumar		Philip Stoyanov	
Fei Chen		Choong-Hoon Kwak		Eric Swanlund	
Yiwu Chen				Alex Tam	
		Daniel Lang			
William Cheung		Timothy Lee		Arash Tavighi	
Michael Chiang		SeungJun Lee		Emmanuel Rossignol Thepie Fapi	
Paul Christensen		WenHui Li		Alan Thompson	
Savio Chu		Jianqiao Li		Michael Todorovic	
Jonny Chung		Ang Li		Hamid Reza Tohidypour	
Christopher Collier		Cyprian Libera		Samer Toukan	
Trevor Condon		Ye Lin		Daniel Troniak	
Michael Conroy		David Lin		Chin-Tsai Tsai	
Carlo Cossette		Geoff Littler		Frederic Tschanz	
Mark Crapper	ST	Mofei Liu		Chao Tsan Tseng	
Foad Davani		Charlie Liu		Michael Tsiroulnikov	
Francisco De Alba		Ana Lopez Fernandez		Jason Tu	GS
Danny deSousa	M	Jessica Ma	ST	Frederick Tung	GS
Paramjit Dhesi	ST	Bojiang Ma	GS	Sergey Uchaikin	M
Navdeep Dhillon	ST	Farid Mabrouk	GS	Carlos Uribe Munoz	GS
Weiguang Ding	GS	Tibor Magyarosi	M	Oscar van der Meer	
Han Du	ST	Andrew Mahoney	M	Jacobus Van Eeden	ST
Suyang Duan	GS	Vincent Mantle		Tristan van Leeuwen	M
Sarah Elmasry		Julieta Martinez	GS	Alexander Viel	M
H D Kenneth Epp		Amir Hossein Masnadi Shirazi Neja	GS	guihua Wang	M
Mona Erfani Joorabchi		Victor Mateescu		Xing Wang	
Fatemeh Eslami		Michael McIvor		Scott Warren	
Mario Estevez		Trent McKeen		Shibo Weng	
Mustafa Fanaswala		Darren McRae		Derek White	
Mark Farrow		Ahmed Medhioub		Alex Wiecke	
Dusanka Firaunovic	_	Reyad Mehfuz		Jess Wilson	
Brian Fisher		Omid Mohareri		Ben Wong	
Gordon Frank		Valiallah Monajjemi		Patrick Wong	
Alexandre Frechette		Soudeh Mousavi		Di Wu	
Wilson Wai Lun Fung		Andrew Ngai		Xiaoye Xia	
Lu Gan					
Red Kernel Garsuta		Andy Ngauv		Tingting Xu	
		Bowen Nie		Shin-Hann Yang	
Erol Girt		Brian Page		Xi Yue	
Ashleigh Gonzales		Andrew Parker		Sajjad Zadkhast	
Emma Gosselin		Graham Percival		Benxin Zhang	
Micheal Griffin		Christian Petersen		Cyrus Zhang	
Grahame Hamilton		Kalyani Phadke	M	David Zlotnik	GS
Brandon Hart	SI				

AF Affiliate - AM Associate Member - F Fellow - GS Graduate Student Member - LF Life Fellow LM Life Member - LS Life Senior - M Member - SM Senior Member - ST Student Member

Abdallah Shami U. Western Ontario

Wednesday 10 July 2:30 pm to 3:30 pm

Room ASB 9705 Simon Fraser University

Cosponsor

IEEE Circuits and Systems Society Victoria Sections

Information

Circuits and Systems chair Liiliana Traikovic ljilja@cs.sfu.ca

Multihoming: scheduling, modelling, and congestion window management

capabilities by harnessing unused resources from devices will benefit from a multihomed framework. Unfortunately, our current means of guaranteeing support multihoming. Despite the latter, a relatively young transport layer standard called the stream multihoming into its design. In this talk, we present the state of-the-art multihoming techniques using SCTP. A comprehensive overview of three main and congestion window management.

Known as multihoming, devices with more than one Speaker: Abdallah Shami received the B.E. degree in network interface can enhance their performance Electrical and Computer Engineering from the Lebanese University, Beirut, Lebanon in 1997, and the Ph.D. alternative access networks. Whether it is improved Degree in Electrical Engineering from the Graduate reliability or sheer throughput potential, network School and University Center, City University of New York, New York, NY in September 2002. In September 2002, he joined the Department of Electrical Engineering reliability while maintaining quality control, specifically, at Lakehead University, Thunder Bay, ON, Canada as the transmission control protocol (TCP), does not an Assistant Professor. Since July 2004, he has been with Western University, Canada where he is currently an Associate Professor in the Department of Electrical control transmission protocol (SCTP), incorporates and Computer Engineering. His current research interests are in the area of wireless/optical networking. Dr. Shami is currently an Associate Editor for IEEE Communications Letters and IEEE Communications research areas will be presented, namely: handover Tutorials and SUrvey. Dr. Shami has chaired key management, concurrent multipath transfer (CMT), symposia for IEEE GLOBECOM, IEEE ICC, IEEE ICNC, and ICCIT. Dr. Shami is a Senior Member of

ED 01JULY13

Saman Zonouz University of Miami

Thursday 25 July 3:30 p.m

Kaiser 2020 2332 Main Mall **UBC**

Trustworthy Smart-Grid infrastructures: threats, challenges, and countermeasures

bases to provide situational awareness, security will enable operators and/or automated response physical intrusions.

communication assets of the power grid in a real-time of Illinois at Urbana-Champaign (UIUC) in 2011. manner.

Secure and reliable operation of next-generation cyber- **Speaker:** Saman Zonouz is an Assistant Professor in physical systems, specifically power grid the Electrical and Computer Engineering Department infrastructures, will require effective trusted computing at the University of Miami since August 2011, and the Director of the 4N6 Cyber Security and Forensics property verification, and intrusion tolerance Laboratory. He has been awarded the Faculty capabilities. Continuous and precise comprehension Fellowship Award by the Air Force Office of Scientific of the system's security status and potential threats Research in 2013, UM Provost Research award in 2011, as well as EARLY CAREER Research award systems to prepare proactively against adversarial from the University of Miami in 2012. His group's coordinated activities, such as coordinated cyber and research projects have been funded by NSF, ONR, DOE/ARPA-E, and Fortinet Corporation.

In this talk, we will overview the power grid security His current research focuses on Systems Security problem, and in particular, potential threats and and Privacy, Intrusion Detection, Forensics, and possible countermeasures in such cyber-physical Response, as well as Trustworthy Critical Cyberenvironments. Additionally, we will review several Physical Power-Grid Infrastructures. He obtained his solutions to model, detect, and tolerate complex Ph.D. in Computer Science, specifically, Intrusion security incidents in computing, physical, or Tolerance Solutions for the Power-Grid, from University

Information

Computer Society chair Sathish Gopalakrishnan sathish@ece.ubc.ca

Alexander Apostolov **OMICRON Electronics**

Friday 12 July 9.00 am - 4.30 pm

Centre Auditorium BC Hydro Edmonds 6911 Southpoint Dr Bby

Light breakfast refreshmentand lunch will be served

Registration fees IEEE student member CAD 25.00 **IEEE** members CAD 40.00 Non members CAD 75.00

Information Jahangir Khan **IAS** Chair jahangir.khan@powertechlabs.com

Joint Power & Energy chair Rama Vinnakota Rama.Vinnakota@bchydro.com

Workshop: IEC 61850 fundamentals, applications and benefits

In the Smart Grid Roadmap IEC 61850 has been 8. Migration Strategies: IEC 61850 is designed for identified as one of the cornerstone technologies. This is a one day seminar that introduces the fundamental concepts of IEC 61850 and then focuses on the applications and benefits. The following topics will be presented.

- 1. Introduction of IEC 61850: This opening session will look at the history of the IEC 61850 standard, the current state of development, as well as the pros and cons of adopting this standard as a platform for substation automation systems.
- 2. IEC 61850 Systems and Their Components: Application of IEC 61850 devices and systems requires good understanding of the functional hierarchy and the components of the system. This describes different possible implementations of IEC 61850 based systems substations projects around the world.
- is the underlying communications protocol in IEC 61850 based substation automation systems. The structure of Ethernet messages needs to be understood well in order to implement and troubleshoot such systems. Priority tagging and V-Lan are described as well.
- 4. GOOSE Messages: GOOSE messages are one AREVA T&D Automation. of the key differentiators of IEC 61850 in comparison The structure of GOOSE messages, repetition concepts are discussed.
- 5. IEC 61850 Process Bus: Sampled Values Publishing and Subscription: Process bus is the foundation for the development of the substations bus, implementation agreements, applications Restoration. and benefits are presented.
- 6. Substation Configuration Language Based He has been actively involved for more than 10 years Engineering: The Substation Configuration Language (SCL) of IEC 61850 is one of the main tools that allow the shift to a different engineering process based on the different XML based files defined in the standard - ICD, CID, SCD, XML and the different SCL files and their use in relation to system testing are discussed.
- 7. IEC 61850 Testing Equipment Requirements and Tools: IEC 61850 based substation automation and protection systems are different from conventional systems due to the use of communications to replace hard wiring for many functions in the substation. This imposes different tools that are described in the lecture.

implementation in existing and new installations and supports the integration of IEDs designed specifically for optimal performance based on it, as well as to allow the integration of legacy IEDs and even electromechanical relays. Tools supporting different migration strategies are described together with possible migration scenarios and a look at the future of IEC 61850 based substation protection, automation and control systems.

Speaker: Dr. Alexander Apostolov received MS degree in Electrical Engineering, MS in Applied Mathematics and Ph.D. from the Technical University in Sofia, Bulgaria. He has worked for fourteen years in the Protection & Control Section of Energoproject Research and Design Institute, Sofia, Bulgaria.

and gives some examples of IEC61850 based From 1990-94 he was Lead Engineer in the Protection Engineering Group, New York State Electric & Gas 3. Ethernet Communications in Substations: Ethernet where he worked on the protection of the six-phase line, application of microprocessor relays, programmable logic and artificial intelligence in protection. 1994-95 he was Manager of Relay Applications Engineering at Rochester - Integrated Systems Division. 1995-96 he was Principal Engineer at Tasnet. 1996-2006 he was Principal Engineer for

with other substation communication protocols. He is presently Principal Engineer for OMICRON electronics in Los Angeles, CA. He is IEEE Fellow and mechanisms and Publishing/ Subscription Member of the Power Systems Relaying Committee and Substations Subcommittee. He is the past Chairman of the Relay Communications Subcommittee, serves on multiple IEEE PES Working Groups and is Chairman of Working Group C9: Guide of the twenty first century. The concept of process for Abnormal Frequency Load Shedding and

> in the development of UCA 2 and IEC 61850. He is member of IEC TC57 Working Groups 10, 17, 18. He is Chairman of the Technical Publications Subcommittee of the UCA International Users Group. He is member of CIGRE and works on CIGRE WG B5.07, B5.09 and B5.36. He is Convener of B5.27 Standard Protection Schemes.

He holds four patents and has authored and presented more than 300 technical papers. Dr. Apostolov is also the Editor-in-Chief of the PAC World magazine - the global forum of the protection, automation and control industry. He is also Adjunct Professor at the Department requirements for the testing equipment and software of Electrical Engineering, Cape Peninsula University of Technology, Cape Town, South Africa.

Registration required - please visit:

http://tinyurl.com/kpro8eaORhttps://meetings.vtools.ieee.org/meeting_registration/register/19119

David Z. Pan University of Texas

Distinguished Lecturer

FIRST EVENT

Monday 15 July 04:00PM to 05:30PM

Room 2020, Kaiser Bldg 2332 Main Mall UBC

Information

Solid-state Ciruits chair Shahriar Mirabbasi shahriar@ece.ubc.ca

SECOND EVENT

Monday 22 July 01:30PM to 03:00PM

Room EOW 430 U.Victoria, Victoria BC

Information

Circuits and Systems chair Ljiljana Trajkovic ljilja@cs.sfu.ca

Design for manufacturability and reliability in extreme CMOS scaling and beyond

CMOS Scaling and Beyond As the CMOS feature enters the era of extreme scaling (14nm, 11nm and beyond), the IC manufacturability printability scaling with 3D-IC integration using through-siliconvias (TSVs) has gained tremendous momentum and initial industry adoption, which can further extend the Mooreis Law even the horizontal scaling stops ultimately. However, as TSV involves disruptive manufacturing technologies, new modeling and design techniques need to be developed for reliable 3D IC integration. This talk will first show how the nanolithography envelope is being pushed with novel design/process integration for multiple patterning only results in systematic performance variations, but also leads to mechanical and electrical reliability concerns. Cross-layer modeling and physical design techniques will be discussed to achieve reliable 3D-IC integration.

scaling (14nm, 11nm and beyond), the IC manufacturability printability challenges are exacerbated. Meanwhile, the vertical scaling with 3Dgained tremendous momentum and initial industry adoption, which can further extend the Mooreis Law as TSV involves disruptive manufacturing technologies, new modeling and design techniques need to be developed for reliable 3D IC integration. This talk will first show how the nanolithography envelope is being pushed with novel design/process integration for multiple patterning lithography as well as other mechanical stress not only results in systematic Distinguished Lecturer for 2008-2009. performance variations, but also leads to mechanical and electrical reliability concerns. Cross-layer modeling and physical design techniques will be discussed to achieve reliable 3D-IC integration.

Design for Manufacturability and Reliability in Extreme Speaker: David Z. Pan received his Ph.D. in computer science from UCLA in 2000. He was a Research Staff Member at IBM T. J. Watson Research Center from 2000 to 2003. Since 2003, he has been an Assistant/ challenges are exacerbated. Meanwhile, the vertical Associate/Full Professor with the Department of Electrical and Computer Engineering, UT Austin. He has published over 180 highly refereed journal and conference papers. He has served as an Associate Editor for IEEE Transactions on CAD, IEEE Transactions on VLSI, IEEE Transactions on CAS - I & II, IEEE CAS Society Newsletter, Science China Information Sciences, Journal of Computer Science and Technology. He has served as Chair of the IEEE CAS/CEDA CANDE Technical Committee and the ACM/SIGDA Physical Design Technical Committee, lithography as well as other emerging technologies. Program/General Chair of ISPD, TPC Subcommittee In 3D-IC, TSV induced thermal mechanical stress not Chair for DAC, ICCAD, ASPDAC, ISLPED, ICCD, ISCAS, and so on. He is a working group member of the International Technology Roadmap for Semiconductor (ITRS). He serves in the ACM/IEEE Design Automation Conference (DAC 2014) Executive Committee.

As the CMOS feature enters the era of extreme He has received a number of awards, including DAC Top 10 Author in Fifth Decade, DAC Prolific Author Award, 9 Best Paper Awards (ASPDAC 2012, ISPD 2011, IBM Research 2010 Pat Goldberg Memorial IC integration using through-silicon-vias (TSVs) has Best Paper Award in CS/EE/Math, ASPDAC 2010, DATE 2009, ICICDT 2009, SRC Techcon in 1998, 2007 and 2012), Communications of the ACM Research even the horizontal scaling stops ultimately. However, Highlights (2013), ACM/SIGDA Outstanding New Faculty Award (2005), NSF CAREER Award (2007), SRC Inventor Recognition Award three times, IBM Faculty Award four times, UCLA Engineering Distinguished Young Alumnus Award (2009), ISPD Routing Contest Awards (2007), eASIC Placement Contest Grand Prize (2009), ICCAD'12 CAD Contest emerging technologies. In 3D-IC, TSV induced thermal Award, among others. He was an IEEE CAS Society

REGISTRATION

15 July event - https://meetings.vtools.ieee.org/meeting_view/list_meeting/19315 22 July event - https://meetings.vtools.ieee.org/meeting_view/list_meeting/19317

E COMPONENTS, PACKAGING, AND

